

Fiberoptic Electric Field Sensor

Features

- No metal parts
- **Passive**
- Miniature
- Optical fiber readout
- High shock/vibration resistance
- High sensitivity
- Wide bandwidth
- High damage threshold

Applications

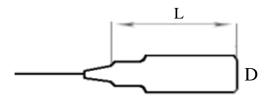
Test & evaluation of HPM, HRI and EMP systems, such as Active Denial Systems & PAA radars

Product Description

This Electric-field sensor, based on EO effect and coupled with a dual-fiber collimator, is probed by a laser through optic fiber and packaged only with dielectric components. It is ideally suitable to remotely and non-intrusively measure electric fields and microwave radiation up to Gigahertz range.

Performance Specifications

E-filed Sensor		Typical	Max	Unit	
Frequency Bandwidth (Ultra High)			18	GHz	
	(high)		7	GHz	
	(Low)		250	MHz	
Sensitivity [1] (High freque	10		mV/m-Hz ^{1/2}		
(Ultra-	20		mV/m-Hz ^{1/2}		
(5		mV/m-Hz ^{1/2}		
Maximum detectable E-fi	200		kV/m		
Damage E-field		5	MV/m		
Package Dimension	See desi	gn			


- [1] Defined by measuring with a 1550nm laser at 20mW and 100MHz $\{2\}$ Possible to be incraesed, please contact us

Fiberoptic Electric Field Sensor

Mechanical Dimensions (mm)

L = 50mm (High-frequency) = 40mm (Low-frequency)

D = 8mm in diameter (High-frequency) = 5mm in square (Low-frequency)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Ordering Information

EOFS-		2			1			
	Туре	Configuration	Package	F	Fiber Type	[1]	Fiber Length	Connector
	11 = High freq (7GHz) 12 = Low freq (250MHz) 18 = Ultra-high freq (18GHz)	1: Transmissive 2: Reflective	Standard =1 Special =0		Panda PM for input = 1	MM fiber 62.5/125 =1 SMF-28 = 2 For output fiber	0.25m =1 0.5m = 2 1.0m = 3 Special=0	None = 1 FC/PC = 2 FC/APC = 3 SC/PC = 4 SC/APC = 5 ST/PC = 6 LC = 7 Special = 0

[1]. For ultra-high frequency version, the output fiber must be SMF-28.

